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1 + 1 = 10

▪ A processor only performs bit operations:
10011001100110 + 100110011001101 = 111001100110011

▪ The processor does not interpret what „10011001100110”
means.

▪ Number system – a method of representing numbers with 
a sequence of 0s and 1s, so that the results are correct.

▪ The most important number systems:

• fixed-point

– integer

– fractional (Q)

• floating-point



Fixed-point integers

Unsigned integer representation in a binary notation:

▪ first, most significant bit (MSB): weight 2N-1

▪ i-th bit: weight 2i-1

▪ last, least significant bit (LSB): weight 1

= 9830

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0

8192 1024 512 64 32 4 2



Fixed-point integers

Signed integer representation:

▪ MSB – a sign bit, 0: positive, 1: negative

▪ the remaining bits: an absolute value in two’s complement
(U2):

• negate all bits (0 → 1, 1 → 0),

• add 1.

Example for 8-bit numbers:

(-1) 0000 0001 → 1111 1110 → 1111 1111

(-123) 0111 1011 → 1000 0100 → 1000 0101



Features of fixed-point integers

▪ Resolution – the smallest difference between numbers, 
is equal to 20 = 1. So we can’t represent fractions!

▪ Range – the smallest and the largest number, depends on 
the number of bits N:

• unsigned: 0 to (2N-1)

• signed: -2N-1 to (2N-1 – 1)

▪ 16-bit integers: 0 to 65535 (unsigned), -32768 to 32767 
(signed).

▪ If we only need positive integers (e.g. in a counter), 
we can double the range by using the unsigned type.



Integer types in C

▪ int – number of bits depends on the processor registers 
length, in a DSP: usually 16 bits (2B) or 32 bits (4B).

▪ char – 8 bits, a byte (1B)

▪ short – 16 bits (2B), a word

▪ long – 32 bits (4B), a double word

▪ long long – in a DSP, usually equal to the accumulator length, 
often 40 bits (4.5B) or 64 bits (8B)

Each type has two versions:

▪ unsigned, e.g. unsigned int

▪ signed (the default), e.g. signed long (= long)



Byte order in memory

If a number takes 4 bytes, in what order are they stored 
in memory?

▪ From the most to the least significant byte (big endian)
– some processors, network transmission.

▪ From the least to the most significant byte (little endian)
– all Intel and (in default mode) ARM CPUs.

▪ In a DSP, we can usually choose either one during the code 
compilation.

▪ In most cases, DSP programs use little endian.



Range overflow

What happens if a number does not fit into the designated type? 
A range overflow occurs, and some bits are lost.

Example: adding two 16-bit integers.

▪ Unsigned integers (max value: 65535)
(65530 + 10) → [1] 0000 0000 0000 0100 → 4

• „excessive” bits are removed,

• the result is a remainder of division by 216.

▪ Signed integers (max value: 32767)
(32760 + 10) → 1000 0000 0000 0010 → -32766 (!!!)

• “1” overwrites the bit sign,

• a range wrap occurs, the number becomes negative!.



How to prevent range overflow?

▪ DSP accumulators have additional “guard bits” (e.g. 40-bit 
accumulator: 32+8), which reduces the risk of overflow for 
intermediate results.

▪ When we write the result to the memory, we must choose 
a type of a sufficient length (e.g. long).

▪ On DSP, we often scale numbers, e.g. we divide the numbers 
by 2 before adding them, then we scale the result.



Fractional numbers

▪ So, is it not possible to represent fractional numbers, 
such as 0.3?

▪ Remember: a number system defines how the bits are 
interpreted.

▪ So, maybe we can interpret them this way?

= 0,29998 ≈ 0,3

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

sign 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15

0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0

+ 2-2 2-5 2-6 2-9 2-10 2-13 2-14



Q15 notation

▪ Notation of fractional numbers as a signed 16-bit sequence 
is called Q15 - 1 sign bit, 0 integer bits, 15 fractional bits.

▪ Resolution (minimum difference between numbers) is
2-15 = 0.000030517578125.

▪ Range: from -1 to (1-2-15), to 0.999969482421875.

▪ A value of +1 is outside the range!

▪ All rules related to range overflow still apply.



QM.N notation

▪ We can extend this notation to a general form QM.N: 
1 sign bit, M integer bits, N fractional bits.

▪ Resolution: 2-N.

▪ Range: -2M to (2M – 2-N).

▪ Example: 1 integer bit and 14 fractional bits is Q1.14. 
Range: -2 to “near” 2.

▪ In a QM.N notation, the position of a decimal point is always 
the same. Hence the name “fixed point notation”.



Q notation with integers

▪ C language does not have a special type for QM.N notation.

▪ This notation is only a bit interpretation convention.

▪ In order to write a Q number, we must interpret the bits 
as if they represented a standard integer, e.g.:

0.3 → 10011001100110 → 9830

▪ Which gives us a conversion rule (for QM.N):

• from a fractional number x to an integer q:
q = x · 2N (with rounding)

• from an integer q to a fractional number x:
x = q / 2N



Q notation with integers

Example conversion for Q15 (2N = 215 = 32768):

0.3 → 0.3 * 32768 → 9830.4 → 9830

0.6 → 0.6 * 32768 → 19660.8 → 19661

Computing an expression (0.3 + 0.6):

9830 + 19661 = 29491

Conversion to a fractional number:

29491 → 29491 / 32768 → 0.89999

(remember: the resolution is 0.00003)



Quantization

▪ After the conversion, the result must be rounded to the 
nearest value that has a representation:

9830.4 → 9830      19660.8 → 19661

▪ This is called a value quantization.

▪ Quantization error: a difference between the quantized and 
the original values (-0.4, 0.2). It has a form of a noise

▪ If we use integers to store fractional numbers, the 
quantization error affects the accuracy of calculations.

▪ For example, in IIR digital filters, quantization noise may 
cause filter instability, despite a correct filter design.



Multiplication of QM.N numbers

To simplify, we will consider Q15 numbers.

How do we compute (0.3 · 0.6)?

▪ Conversion as before.

▪ 9830 · 19661 = 193267630

▪ Multiplication of two Q15 numbers gives us a Q30 value!

▪ Multiplication of two QM.N numbers results in 
Q(2M).(2N) value.

▪ Conversion of a result:
193267630 → 193267630 / 230 → 0.1799945



Division of QM.N numbers

▪ Division is a very slooooow operation, especially 
in the fixed-point notation. It cannot be performed as directly 
as a multiplication.

▪ The most often approach is finding a reciprocal using 
a numeric algorithm, then performing a multiplication.

▪ There is an exception: dividing by a power of two (2k) may be 
performed very quickly by bit shift right by k positions. 
In C: operator >>.

▪ Similarly, we can multiply by 2k, with bit shift left (<<) 
by k positions (zeros enter from the right).

▪ It should be used in the code, e.g. “x >> 1” instead of “x / 2”.



More about multiplication

We have a result of multiplication of two Q15 numbers 
as a Q30 value. How can we get a Q15 number back?

▪ First, divide by 215, shifting right by 15 b.

▪ Next, discard higher bits, leaving only lower 16 b.

▪ This way, rounding down is performed.

▪ To round to the nearest number, before shifting, add 214

(1 on the highest bit that will be removed), then shift 
and truncate the result.

193267630 (Q30) → (193267630 + (1<<14)) → 193284014 → 

→ (>> 15) → 5898 (Q15) → 5898 /32768 → 0.17999267



Underflow

▪ What happens if, after bit shifting, we get only 0s?

▪ (0.003 × 0.002) → 98 × 66 = 6468 (Q30)

▪ 6468 >> 15 = 0 (Q15) !!!

▪ The result (0.003 × 0,002) = 0.00006 is too small.

▪ Underflow occurs, resulting in the result equal to zero.

▪ All the following multiplications (e.g. in a filter) will also give 
the result of zero!

▪ We try to prevent the underflow by using longer types 
and by reorganizing the order of calculations.



Q15 multiplication in C

How do we write a Q15 multiplication in C?

Not this way – the result won’t fit in short type (16 bits), 
higher bits will be lost: 

Maybe this way? Type long has 32 bits, so the result should fit.
Unfortunately, nothing has changed. Why?

short a = 9830;
short b = 19661;
/* short y = ??? */

short y = a * b;  // 1966

long y = a * b;  // 1966



Q15 multiplication in C

How does the C compiler interpret this code?

▪ First, it computes the right-side expression: (a * b).

▪ The result type is equal to the “largest” type of arguments. 
Both arguments are short, so the result is also short.

▪ The highest bits are truncated (they don’t fit in short).

▪ The (incorrect) result is written to the variable on the left side 
(type long).

long y = a * b;  // a, b: type short



Type casting in C

▪ To obtain the correct result, we must “promote” an argument 
to a longer type.

▪ Type cast in C requires specifying the new type 
in parentheses before an expression or a variable.

▪ Now, one of the arguments is long, so the result will 
also be long.

▪ We can also cast a numeric constant by adding “L” (for long) 
after the value:

long y = (long)a * b;  // 193267630

long y = a * 19661L;



Q15 multiplication in C

To multiply (0,3 · 0,6) and write the result into short variable
in Q15, we must do this very long instruction:

or, with rounding, even longer:

Fortunately, on DSPs we can often use “shortcut” instructions.

For example, on C5535 DSP we can achieve the same result with:

_smpy – multiply with saturation

short y = (short)(((long)a * b) >> 15);

short y = (short)((((long)a * b) + (1<<14)) >> 15);

short y = _smpy(a, b);



Saturation mode

▪ If an overflow occurs, the result may be very wrong, e.g.: 
32760 + 10 → -32766.

▪ DSPs can use saturation arithmetic. Saturation works 
by clipping the values to the range:
32760 + 10 → 32767

▪ The result is still wrong, but the error is smaller.

▪ On C5535 DSP, we can use instructions working 
in the saturation mode. Their names start with _s:
_sadd (+), _ssub (–), _smpy (×), _sround (rounding), etc.



Floating point numbers

▪ Floating point notation increases the accuracy of number 
representation significantly, compared with fixed point.

▪ The processor must have a special unit for floating point 
processing – FPU (floating point unit). Such a processor 
is a floating-point processor.

▪ C5535 DSP used in the course project, as well as many other 
DSPs, does not have a FPU – it is a fixed-point processor.

▪ Fixed-point DSPs are still used, they are not “obsolete”.



Floating point numbers

Each number is represented with:

▪ S – sign (0 or 1, positive or negative),

▪ M – mantissa,

▪ E – exponent,

▪ b – base (usually b = 2).

(-1)s · 1.M · b(E-127)

Example:

3.14159265359 = 1.570796326795 · 21

S = 0,  M = 570796326795,  E = 128,  b = 2



Floating point types

Floating point types defined in IEEE 754 standard:

▪ float – single precision

• 32 bits: 1 b sign, 23 b mantissa, 8 b exponent

• 7 significant digits after the decimal point

• range: ±3.4·10-38 to ±3.4·1038

▪ double – double precision

• 64 bits: 1 b sign, 52 b mantissa, 11 b exponent

• 15 significant digits after the decimal point

• range: ±1.7·10-308 to ±1.7·10308

Resolution is variable, it depends on the value.



Floating point types

According to IEEE 754, float and double variables may have 
the following special variables:

▪ Inf – positive infinity, e.g. (1.0 / 0.0)

▪ -Inf – negative infinity, e.g. (-1.0 / 0.0)

▪ NaN – undefined value (not a number), e.g. (0.0 / 0.0)

▪ -0.0 (negative zero) – should be treated as the normal zero.



Features of the floating-point notation

▪ The risk of overflow is very low, because of very wide range.

▪ The risk of underflow is low (lower for double).

▪ No special notation is needed in C:

We get 0.18, not 0.1799945 as for the fixed-point notation.

▪ Floating-point operations require significantly more 
processor cycles and more memory.

double y = 0.3 * 0.6;



Comparing floating-point numbers

One caveat: remember that floating-point numbers have finite 
precision.

This probably won’t work:

The result of division may be e.g. 2.5000000000001 instead 
of 2.5.

We must check whether the difference is below the limit, 
e.g. lower than 10-8:

if (a / 2 == 2.5) {   // double a

if (abs(a / 2 - 2.5) < 1e-8) {



Casting floating-point values in C

Remember: a C compiler computes the right-hand side first.

The result will be b = 2, because integer division (a / 2) will be 
performed first, only then the result will be written to a double 
variable.

The correct casting (result 2.5):

short a = 5;
double b = a / 2;

short a = 5;
double b = (double)a / 2;
double c = a / 2.0;
float d = (float)a / 2;
float e = a / 2.0f;



Advantages of floating-point processors

Floating-point processors compared with fixed-point ones

▪ Higher accuracy of number representation.

▪ Larger dynamic range – low quantization noise.

▪ Easier to code – no special conversion to Q format needed.

▪ Easier and more accurate mathematic operations 
(square root, logarithm, trigonometric functions, etc.).

For example, in digital IIR filters, quantization noise is much 
lower, risk of filter instability is reduced, the results are more 
accurate.



Disadvantages of floating-point processors

Floating-point processors compared with fixed-point ones

▪ Longer computations, more cycles used for performing 
operations (even a simple multiplication).

▪ More memory used, especially with the double type.

▪ More energy consumption (= higher cost of usage).

▪ Much higher cost of a processor.



Practical recommendations

When should we use a floating-point DSP?

▪ when we need high precision of computations,

▪ when large dynamic range is needed, e.g. processing sound 
samples with 16-bit or 32-bit resolution – lower noise,

▪ when we can afford a fixed-point DSP.

When should we use a fixed-point DSP?

▪ when low cost of a DSP and its usage is important,

▪ when only simple DSP algorithms (FFT, filters) are used,

▪ when the processed signal has low dynamic range 
(e.g. a signal from A/D converter with 12-bit resolution).


