
SPECTRAL ANALYSIS
on signal processors

Applications of digital processors

Author: Grzegorz Szwoch

Gdańsk University of Technology, Department of Multimedia Systems

Introduction

▪ Samples describe values of a digital signal in the time
domain.

▪ Many digital signal processing operations must be performed
in the frequency domain. We only want to process selected
frequency components, not the whole signal.

▪ Spectral analysis – determining spectral (frequency)
components of a signal.

Example

Time plot of a clarinet sound recording.

We don’t know from this plot what the signal structure is.

Example

The result of spectral analysis of the clarinet sound.

▪ We can see the signal structure – a sum of harmonics.

▪ We can determine the sound pitch – it is related to frequency
of the first spectral peak.

Fourier transform

▪ The Fourier transform converts N signal samples into
N samples of the signal spectrum.

▪ The result of the transform is the signal spectrum
(an analogy to the light spectrum).

▪ The inverse Fourier transform converts spectrum samples
back into signal samples.

▪ A signal may be transformed into
the spectrum, process it and transform
back into the processed signal.
This is spectral processing.

Spectrum of a real signal

▪ Fourier transform works for both real and complex signals.

▪ The spectrum is always a set of complex numbers.

▪ Usually, we process real (not complex) signals.

▪ N samples of the spectrum of a real signal:

• the first value: the direct component, a sum of samples

• values 2 to N/2: samples of the signal spectrum

• value at N/2 + 1: a Nyquist component, should be zero

• values N/2 + 2 to N: a mirror reflection of the first half
of the spectrum (a Hermitian symmetry).

▪ A spectrum obtained from N samples has (N/2 + 1) unique
values.

Spectrum of a real sound

We only need (N/2 + 1) values out of N spectral samples.

Amplitude spectrum

▪ Spectrum X(f) contains complex values.

▪ Usually, we are interested in the magnitude spectrum A(f),
the absolute value of the complex spectrum:

▪ Power spectrum is the absolute value of the spectrum,
squared:

▪ Often, we use a logarithmic spectrum, expressed
in decibels (dB):

)()(fXfA =

2
)()(fXfP =

)(log20)(log10)(

)(log10)(

10

2

10

10

fXfXfP

fXfA

==

=

Magnitude spectrum

▪ To obtain the amplitude of spectral components, we must
divide the absolute value of the spectrum by the number of
samples N, and multiply by two, as the signal energy
is divided into two mirrored halves.

▪ Amplitude of a spectral component at index n:

▪ The first (DC) and the Nyquist component do not have a pair,
they should not be multiplied by two.

▪ The direct component divided by N equals to the mean of the
signal within the analyzed section.

][
2

][nX
N

nA =

Frequencies of the signal samples

▪ From N signal samples, we obtain N spectral samples.

▪ The spectrum covers the frequency range [0, fS].

▪ The n-th spectral component is at the frequency:

▪ Spacing between spectral values is equal to the sampling
frequency divided by the number of samples.

▪ This is a frequency resolution of spectral analysis:

N

f
nnf S=][

N

f
df S=

Frequency resolution

▪ What does frequency resolution mean (df = fS / N):

• two spectral components cannot be distinguished if they
are spaced by less than df (they fall into the same
spectral bin),

• inaccuracy (error) of determining the frequency
of a spectral component is max. ±df/2.

▪ Larger number of samples (N) increases the resolution.

▪ Resolution may be improved by zero padding the signal
before the transform. We don’t get more data (the values are
interpolated), but we obtain better resolution.

Frequency resolution

Example: sum of two sines f1 = 234.375 and f2 = 281.25 Hz

Periodicity of the signal

▪ Fourier transform assumes that the signal is periodic.

▪ A signal section used for the transform is assumed to be
the signal period (or its multiple).

▪ Example for a signal in which the length of the window
is a multiple of the signal period (f = 937.5 Hz; N = 512):

Periodicity of the signal

▪ What happens if the analysis window length is not a multiple
of the signal period?

▪ The result is a transform of a signal that is a “looped”
analysis window.

▪ Example for f = 1000 Hz, N = 512:

Spectral leakage

How does the spectrum of such a signal look like?

This is spectral leakage – the spectral energy “leaks” to the
adjacent bins.

Spectral leakage

Example: sum of sines 1000 Hz & 1100 Hz (N = 512).

Spectral leakage hides the shape of individual peaks.

Analysis windows

▪ Spectral leakage is a result of discontinuity at the analysis
window when it is looped.

▪ Leakage may be suppressed if the signal is multiplied
by a window function before the transform.

▪ The window function suppresses the samples at the edges.

▪ The result of applying a window:

• it reduces energy leaks to the adjacent spectral bins,

• but it also widens the peaks – the leakage is confined to a
narrower range.

Analysis windows

The windows that are most frequently used for spectral analysis:

Effect of a window function

Window applied to the analysis in the case of large leakage
– the result is improved (the leakage diminishes).

Effect of a window function

Effect of applying a window when there was no leakage
- widening of the peak is visible.

Remarks about windows

▪ There is no “best” window. Hamming and von Hann are
the most frequently used ones.

▪ Blackman window is useful when we need to suppress
the leakage, at the cost of widening the peaks.

▪ We use the window function when we analyze the spectrum,
e.g. we search for the maxima.

▪ We do not use the window if we process the signal in
frequency domain and then we get back to time domain.

▪ Amplitude normalization when window w is used:

][
2

][nX
w

nA
i

=

Computing a Fourier transform

There are two ways to compute a Fourier transform

1. From the definition of discrete Fourier transform (DFT):

• works for all signals,

• requires many multiplication and addition operations.

2. With Cooley-Tukey algorithm, also called fast Fourier
transform (FFT):

• reduced number of operations,

• limitations related to the window length,

• used e.g. in digital signal processors.

FFT

Fourier transform of two samples:

▪ We need to perform: one multiplication, one addition and
one subtraction.

▪ This is a butterfly structure.

▪ It is a base element of a radix-2 FFT algorithm.

▪ FFT of length 2N may be computed in N stages, using
the butterfly structure.

k

n

k

n

Wxxy

Wxxy

−=

+=

)1()0()1(

)1()0()0(
x(0)

x(1)

y(0)

y(1)

FFT

A radix-2 Cooley-Tukey FFT algorithm:

▪ The length of the signal must be a power of two: 2N.

▪ We divide the signal into two parts, assigning samples to
each part alternatively.

▪ We repeat this procedure until we get length 2 sequences.

▪ We compute the “butterflies”.

▪ Then we compose the results into
new butterflies.

▪ This is repeated until the whole
transform is computed.

FFT – example for N = 8 = 23

FFT – twiddle factors

▪ The coefficients W have form:

▪ They are called twiddle factors.

▪ N is the transform length at a given stage.

▪ At the i-th stage we need 2i-1 coefficients.

▪ Twiddle factors are always the same for a defined transform
length. Therefore, they are usually precomputed and kept in
a table in memory.

−

==

−

N

k
j

N

k
eW

Nkjk

N

 2
sin

2
cos

/2

Bit reversal

▪ Before the transform, the samples must be set in the correct
order for the first stage.

▪ It can be done by reversing the bit order of the indices
in the binary notation (bit reversal)

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Transform length

▪ A classic radix-2 FFT algorithm requires that the transform
length is a power of two. It is recommended to use this
convention.

▪ The most frequently used transform lengths:
512, 1024, 2048.

▪ If we don’t have enough samples, we can pad them with
zeros to the nearest power of two. We shouldn’t do this
unless there are no more samples available.

Modern FFT algorithms

FFT libraries used in practice (e.g. FFTW):

▪ Implementations of “butterflies” for various radices,
e.g. 2, 3, 5, 7, 11, 13, 17, 19 (low prime numbers).

▪ The required transform length is decomposed into prime
factors, e.g.: 2016 = 25·32·7.

▪ The signal is divided into sections and FFT of radix-2/3/7 are
computed, then the results are merged
(a split radix algorithm).

▪ If one of the parts has a length which is a large prime
number, a slower DFT is computed. This should be avoided.

Comparison DFT and FFT efficiency

Taken from: Mark McKeown, FFT Implementation on the TMS320VC5505, TMS320C5505, and
TMS320C5515 DSPs (SPRABB6A)

For radix-2 N=1024: about five thousands of complex
multiplication operations, compared with over a million
multiplications for the DFT (200× more).

Analysis of a continuous signal

▪ A Fourier transform works on blocks of samples.

▪ If we analyze a continuous signal, we need to divide it into
blocks (windows). For each block, we compute FFT.

▪ This is called a short-term Fourier transform (STFT).

▪ Each spectrum “averages” the signal within the window
over time.

▪ We lose short-term events inside the block.

Analysis of a continuous signal - STFT

STFT result in a form of a spectrogram: time (horizontal)
vs. frequency (vertical) vs. spectral level (color).

Temporal resolution of STFT

▪ Temporal resolution depends on the window length:

▪ It is a reciprocal of frequency resolution.

▪ Interpretation: a minimum time difference between two
events in the signal that can be distinguished in STFT.

▪ We can’t have good temporal resolution and good frequency
resolution of STFT at the same time.

dff

N
dt

S

1
==

Temporal resolution of STFT

Comparison of windows of length 512 and 4096 samples.

time

fr
e
q
u
e
n
c
y

Overlapping

▪ Overlapping is achieved by moving the analysis window
by less than the window length (some samples are used
more than once).

▪ We use overlapping to:

• increase the effective temporal resolution,

• reduce the effect of applying a window function.

▪ Usually:

• for Hamming and von Hann window, we shift the window
by ½ of its length,

• for Blackman window, we shift it by ¼ of its length.

FFT on digital signal processors

▪ Architecture and commands of digital signal processors allow
for fast FFT execution.

▪ Some DSPs have coprocessors for FFT computation.

▪ The DSP maker usually provides optimized FFT procedures in
Assembler, we should use them.

▪ Often, they are radix-2 implementations.

▪ We can write our own FFT implementation, bit it’s not easy to
obtain a faster algorithm than the one already tested.

FFT on C5535 DSP

▪ The C5535 fixed point DSP (used in the course project)
has a coprocessor for FFT computations (HWAFFT).

▪ A hardware FFT implementation for length:
8, 16, 32, 64, 128, 512, 1024.

▪ Uses complex signal values. If we process a real signal, we
must insert zeros for the imaginary parts.

▪ A special procedure for bit reversal exists.

▪ The twiddle factors are precomputed and kept in memory.

▪ Two FFT stages can be computed in a single run.

FFT on C5535 DSP

▪ Functions for FFT and IFFT are available from C code.

▪ It’s easier to use functions from DSPLIB.
Documentation: SPRU422J

Complex spectrum representation

▪ Spectral values are complex numbers.

▪ Real and imaginary parts are written separately, one after
another:
Re(0), Im(0), Re(1), Im(1), Re(2), Im(2), …

▪ Each part is represented as Q15 or Q31.

▪ Function cfft requires a complex signal. If we have a real
signal, we must insert zeros in between real values.

▪ For IFFT, we must write a complex spectrum as above.

FFT of a real signal

Functions rfft and irfft use a trick:

▪ they treat a real signal as a complex one,

▪ they compute FFT of length N/2,

▪ then they transform the result to obtain the correct one.

Therefore, we can compute FFT of maximum length 2048.

Details: Robert Matusiak, Implementing Fast Fourier Transform Algorithms of Real-Valued
Sequences With the TMS320 DSP Platform (SPRA291)

WARNING: all FFT functions in DSPLIB operate in place, i.e., they
overwrite the input buffer!

FFT of a real signal

▪ Spectrum of a real signal is symmetric.

▪ From N signal values, the rfft function computes N/2 complex
values of the spectrum, represented with N numbers
(real part, imaginary part).

▪ The first two values are real: the direct component
and the Nyquist component.

▪ Spectrum representation:
Re(0), Re(N/2), Re(1), Im(1), Re(2), Im(2), …

Range overflow

▪ On fixed point DSPs, there is a risk of range overflow when
FFT stages are computed.

▪ DSPLIB functions work in two modes.

▪ SCALE mode:

• results after each stage are divided by 2,

• no overflow if the input values < 1.

▪ NOSCALE mode:

• no scaling,

• no overflow only if the input values < (1/N),
for FFT of length 2N.

FFT of a real signal

▪ For a real signal, rfft function:

▪ Arguments:

• x – pointer to a sample buffer (will be overwritten!),
type DATA (= short).

• nx – buffer length (the number of samples).

• type – scaling mode, we use SCALE.

rfft(bufor, 2048, SCALE);

Project configuration for FFT

FFT functions from DSP library have the following requirements
(example for N = 2048).

▪ Memory configuration in .cmd file:

▪ Buffer declaration in C code:

▪ The name “.input” is an example, any name can be used.

.fftcode > SARAM0

.data:twiddle > SARAM1, align(2048)

.input > DARAM0, align(4)

#define N 2048
#pragma DATA_SECTION (bufor_fft, ".input")
DATA bufor_fft[N];

A practical project – a Doppler radar

We use a DSP to analyze the signal from a microwave Doppler
radar sensor.

▪ The emitter send an electromagnetic wave
– a sine of frequency 24.125 GHz.

▪ The receiver gets the wave reflected from an object.

▪ Due to the Doppler effect,
the reflected wave has different
frequency than the emitted one.

▪ The frequency shift depends
on the object speed.

Spectrogram of a sensor signal

The difference signal – a spectrogram from a passing vehicle

Signal analysis

The algorithm works as follows:

▪ the signal is analyzed in blocks of 2048 samples,
with 50% overlap,

▪ the incoming signal samples are written into a circular buffer,

▪ when the buffer is full:

• the buffer is multiplied by a Hamming window,

• FFT is computed,

• power spectrum is computed,

• we look for spectral maxima (peaks),

• a vehicle speed is computed from the frequency
of a spectral peak.

Buffering of signal samples

▪ The incoming signal samples are written into a circular buffer
of length 2048 (short numbers in Q15 format).

▪ The window is moved by 1024 samples. When we get 1024
new samples, then:

• we loop over the buffer, from the oldest to the latest
sample,

• we multiply samples by values of the Hamming window
(using _smpy function),

• we store the result in a linear buffer.

Window function

▪ There is no need to compute Hamming window each time.
The window values are constant for a given length.

▪ We compute the window values using a software.

▪ The values are converted to Q15.

▪ They are stored in a table (const short) in C code.

▪ Warning: the maximum value of the window is 1. We cannot
write 1 in Q15! We have to scale the window, multiplying by
32767 instead of 32768.

Power spectrum

▪ We compute the complex spectrum with rfft.

▪ We compute the power spectrum:

• iterate over pairs (Re, Im),

• compute a square of each part (_smpy),

• sum up the squared real and imaginary part,

• write the result to the buffer (we can use the same
buffer).

▪ For amplitude spectrum, the square root of the result should
be computed (sqrt_16 function from DSPLIB).

Spectrum of a single block

Next, we analyze the spectrum, looking for the peaks.

Peak finding

There are many methods of peak finding. An example:

▪ we compute a derivative of the spectrum: from each spectral
value, we subtract the previous one,

▪ if the derivative crosses zero going down, it means the
maximum is at that position,

▪ we also need to check the spectral amplitude to reduce
the noise effect,

▪ we can also add other conditions, e.g. the maximum width
of the peak.

Peak finding

Power spectrum and its derivative.

A peak is found at index 104.

Velocity calculation

All that is remaining is to compute the speed.

▪ Relation between frequency and speed:
v ≈ 0.02234 · f (from the Doppler equation)

▪ Relation between the spectral index n and the frequency f,
assuming fS = 48 kHz: f = 23.4375 · n

▪ So: v ≈ 0.52425 · n [km/h]

▪ In Q15: v ≈ 17179 · n

▪ We compute: 104 * 17179 = 1786616

▪ In a decimal notation:
1786616 / 32768 ≈ 54.52 km/h

Accuracy of speed measurement

▪ Remember that the accuracy of frequency calculation
depends on the frequency resolution. For N = 2048,
the maximum error is 11.72 Hz, c.a. 0.26 km/h.

▪ The index of the peak may not indicate the real peak.

Accuracy of peak finding

▪ We can improve the peak finding accuracy, but this method
requires a division, so this algorithm is rather for
floating-point processors.

▪ Three points determine a parabola.

▪ We match a parabola to the spectral peak and its two
neighbors. Their values are: a, b, c.

▪ The parabola peak position is given by:

▪ In our example: m = 103.8; v = 54.42 (was 54.52).

Źródło: https://ccrma.stanford.edu/~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html

cba

ca
nm

+−

−
+=

22

1

Accuracy of peak finding

The result of parabola matching and finding its maximum (×):

